If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2+39x+7=0
a = 50; b = 39; c = +7;
Δ = b2-4ac
Δ = 392-4·50·7
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-11}{2*50}=\frac{-50}{100} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+11}{2*50}=\frac{-28}{100} =-7/25 $
| -4=0.33h-10 | | -3=-0.333h-10 | | 2y-51=67 | | 6x/5=53 | | 0.2•1.22/3=x | | -3(4p+2)-2(6-11p)=3(2+3p) | | (7y+7)-(6+6y)=6 | | 9^x+4•3^x-3=0 | | -(10x-4)-(3x-6)+7=-11(x-1)-(5+12)+3 | | 6((xx2)-4)+8-2xx2=7 | | X+6+3x=41-7 | | 6(x²-4)+8-2x²=7 | | 12x-48+48=12x-48+48 | | 6x-10-4x=4-7 | | 6x-2(x-2)=4(x+1)+9 | | 6((xx2)-4)+8-2x(2)=7 | | 10x-7+5x=25+18 | | 4/7x+1/2=1/3-3/7x+1/3 | | (6x+14)+(3x×29)=90 | | -9=3x-12-2x | | 7x+12-4x=5x-12+2x+8 | | 17+2(4+(4xx2))=33 | | 9-5|2x-2|=13 | | 0=-30.6+24.5x-4.9X^2 | | 3(4x-16)=13(x-4) | | 2.2q-5.9-4.1q=-2.9q-1.9 | | 1/3x*1/4x=4 | | 8x+6x+2+8=4x+5+9x | | 6(x+2)+5=6x+9 | | 5x+10+3x=4+6x-18 | | 8((2r-3)-r=3(r+2) | | 3/5x-10=-4x-+-8 |